LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Extracellular Matrix Muscle Arm Development Defective Protein Cooperates with the One Immunoglobulin Domain Protein To Suppress Precocious Synaptic Remodeling.

Photo from wikipedia

Synaptic remodeling plays important roles in health and neural disorders. Although previous studies revealed that several transcriptional programs control synaptic remodeling in the nematode Caenorhabditis elegans, the molecular mechanisms of… Click to show full abstract

Synaptic remodeling plays important roles in health and neural disorders. Although previous studies revealed that several transcriptional programs control synaptic remodeling in the nematode Caenorhabditis elegans, the molecular mechanisms of the dorsal D-type (DD) synaptic remodeling are poorly understood. Here we show that extracellular matrix molecule muscle arm development defective protein-4 (MADD-4) cooperates with the one immunoglobulin domain protein-1 (OIG-1) to defer precocious DD synaptic remodeling. Specifically, loss of MADD-4 exhibited the precocious DD synaptic remodeling. The long isoform MADD-4L is dynamically expressed while the short isoform MADD-4B is persistently expressed in DD neurons of L1 stage. In the unc-30 mutant lacking the Pitx-type homeodomain transcription factor UNC-30, the expression levels of both MADD-4B and -L isoforms were dramatically downregulated in DD neurons of the L1 stage. Our further data showed that MADD-4B and -L isoforms physically interact with OIG-1 and madd-4 acts in the oig-1 genetic pathway to modulate the DD synaptic remodeling. Our findings demonstrated that the extracellular matrix plays a novel role in synaptic plasticity.

Keywords: protein; muscle arm; extracellular matrix; precocious synaptic; synaptic remodeling

Journal Title: ACS chemical neuroscience
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.