Traditional Chinese medicine (TCM) has been around for thousands of years and is increasingly gaining popularity in the Western world to treat various complex disorders including the incurable neurodegenerative condition,… Click to show full abstract
Traditional Chinese medicine (TCM) has been around for thousands of years and is increasingly gaining popularity in the Western world to treat various complex disorders including the incurable neurodegenerative condition, Parkinson's Disease (PD). One of the many directions in recent studies of PD is utilizing the phenotypic assay, or cytological profiling, to evaluate the phenotypic changes of PD-implicated cellular components in patient-derived olfactory neuroepithelial (hONS) cells, upon treating the cells with extracts or pure compounds. To obtain small molecules for studies utilizing PD phenotyping assays, Ligusticum chuanxiong Hort was selected for analysis as it is a popular Chinese herbal medicine used for treating PD-like symptoms. Fifty-three secondary metabolites, including six new compounds, were isolated from the ethanolic extract of L. chuanxiong; their structures were elucidated based on several spectroscopic techniques such as NMR, MS, Fourier transform infrared (FTIR), UV, and theoretical density functional theory (DFT) calculations. Cytological profiling of the afforded natural products against PD hONS cells revealed 34 compounds strongly perturbated the staining of several cellular organelles. In fact, greaterthan 1.5-fold change was observed compared to the control (dimethyl sulfoxide; DMSO), with early endosome, lysosome, and autophagosome (LC3b) being particularly affected. Given these biological compartments are closely related to PD pathogenesis, the results helped rationalize the traditional medicinal use of L. chuanxiong in PD treatment. Further, the hit compounds can serve as chemical probes to map the molecular pathways underlying PD, potentially leading to new therapeutic targets for PD.
               
Click one of the above tabs to view related content.