Excitatory neurotoxicity caused by the accumulation of glutamate in the synaptic cleft is an important cause of Parkinson's disease (PD). Astrocyte glutamate transporter 1 (GLT-1) is the main transporter responsible… Click to show full abstract
Excitatory neurotoxicity caused by the accumulation of glutamate in the synaptic cleft is an important cause of Parkinson's disease (PD). Astrocyte glutamate transporter 1 (GLT-1) is the main transporter responsible for transporting glutamate, and investigations toward the regulation of GLT-1 in astrocytes can reveal important insights. Vitamin C (VC) has important protective effects on the brain, but its effect on the regulation of GLT-1 expression is unclear. The purpose of this study was to explore any regulatory effect of VC on GLT-1 expression in astrocytes and to clarify the possible mechanism of such regulation. We found that GLT-1 expression was impaired in 1-methyl-4-phenylpyridinium iodide (MPP+)-treated astrocytes, and the transport capacity for glutamate was significantly reduced. Pretreatment with VC restored the GLT-1 expression in the MPP+-treated astrocytes. Intraperitoneal VC administration in a PD murine model confirmed that GLT-1 expression was restored in midbrain tissue. The VC-dependent rescue of GLT-1 expression in the MPP+-treated astrocytes was shown to be due to inhibition of GLT-1 ubiquitination. Transcriptome sequence analysis revealed a number of differentially expressed genes as a result of VC treatment on MPP+-treated astrocytes, including the downregulation of HECT Domain E3 ubiquitin protein ligase 1 (Hectd1). After knocking down Hectd1, the impaired GLT-1 expression caused by MPP+ was alleviated, while overexpression of Hectd1 significantly reduced the expression of GLT-1. After overexpression of Hectd1, VC could no longer increase GLT-1 expression of MPP+-treated astrocytes, indicating that HECTD1 is essential for VC regulation of GLT-1. Thus, VC reduces the ubiquitination of GLT-1 in astrocytes by inhibiting the expression of HECTD1. Our findings have identified a novel mechanism by which VC regulates the expression of GLT-1 in astrocytes.
               
Click one of the above tabs to view related content.