Membrane disruption mediated by the accumulation of amyloid-β (Aβ) on cell membranes is central to the pathogenesis of Alzheimer's disease (AD). Cholesterol, an important component of membranes, is well-recognized as… Click to show full abstract
Membrane disruption mediated by the accumulation of amyloid-β (Aβ) on cell membranes is central to the pathogenesis of Alzheimer's disease (AD). Cholesterol, an important component of membranes, is well-recognized as a risk factor in AD. It can affect the aggregation and pore formation of Aβ on membranes whereas the specific effects are rather complex, particularly regarding the non-linear response to cholesterol concentrations. Yet, the mechanistic understanding of the role of cholesterol in Aβ-membrane interactions remains incomplete. Herein, we employed microsecond-scale molecular dynamics simulations to investigate the effects of cholesterol on Aβ dimerization in a lipid bilayer containing different molar ratios of cholesterol (0, 20, and 40 mol %). Cholesterol reduces the time required for the formation of stable dimers and exerts dual effects on Aβ-membrane interactions. First, cholesterol promotes the extraction of the C-terminal region from the membrane to water. Consequently, at the ratios of 0 and 20 mol %, peptides are anchored at the membrane-water interface, but they are repelled to water at a ratio of 40 mol % with high structural flexibility. Second, cholesterol weakens Aβ-membrane interactions, thereby enhancing inter-peptide interactions. The former is favorable for dimerization while the latter is not. The balance between two factors eventually leads to a non-monotonic effect on the degree of dimerization, whereby the number of inter-peptide contacts is the largest at a cholesterol ratio of 20 mol %. These results provide atomistic insights into the regulation mechanism of Aβ42 aggregation by cholesterol and help to understand the pathological link between cholesterol and AD.
               
Click one of the above tabs to view related content.