Self-assembly of the amyloid-β (Aβ) peptide to form toxic oligomers and fibrils is a key causal event in the onset of Alzheimer’s disease, and Aβ is the focus of intense… Click to show full abstract
Self-assembly of the amyloid-β (Aβ) peptide to form toxic oligomers and fibrils is a key causal event in the onset of Alzheimer’s disease, and Aβ is the focus of intense research in neuroscience, biophysics, and structural biology aimed at therapeutic development. Due to its rapid self-assembly and extreme sensitivity to aggregation conditions, preparation of seedless, reproducible Aβ solutions is highly challenging, and there are serious ongoing issues with consistency in the literature. In this paper, we use a liquid-phase separation technique, asymmetric flow field-flow fractionation with multiangle light scattering (AF4-MALS), to develop and validate a simple, effective, economical method for re-solubilization and quality control of purified, lyophilized Aβ samples. Our findings were obtained with recombinant peptide but are physicochemical in nature and thus highly relevant to synthetic peptide. We show that much of the variability in the literature stems from the inability of overly mild solvent treatments to produce consistently monomeric preparations and is rectified by a protocol involving high-pH (>12) dissolution, sonication, and rapid freezing to prevent modification. Aβ treated in this manner is chemically stable, can be stored over long timescales at −80 °C, and exhibits remarkably consistent self-assembly behavior when returned to near-neutral pH. These preparations are highly monomeric, seedless, and do not require additional rounds of size exclusion, eliminating the need for this costly procedure and increasing the flexibility of use. We propose that our improved protocol is the simplest, fastest, and most effective way to solubilize Aβ from diverse sources for sensitive self-assembly and toxicity assays.
               
Click one of the above tabs to view related content.