The prevalence of neonatal hypoxic-ischemic encephalopathy (HIE), a devastating neurological injury, is increasing; thus, effective treatments and preventions are urgently needed. The underlying pathology of HIE remains unclear; recent research… Click to show full abstract
The prevalence of neonatal hypoxic-ischemic encephalopathy (HIE), a devastating neurological injury, is increasing; thus, effective treatments and preventions are urgently needed. The underlying pathology of HIE remains unclear; recent research has focused on elucidating key features of the disease. A variety of diseases can be alleviated by consuming a ketogenic diet (KD) despite differences in pathogenesis and features, given the common mechanisms of KD-induced effects. Dietary modification is the most translatable, cost-efficient, and safest approach to treat acute or chronic neurological disorders and reduces reliance on pharmaceutical treatments. Evidence suggests that the KD can exert beneficial effects in animal models and in humans with brain injuries. The efficacy of the KD in preventing neuronal damage, motor alterations, and cognitive decline varies. Moreover, the KD may provide an alternative source of energy, enhance mitochondrial function, and reduce the expression of inflammatory and apoptotic mediators. Thus, this diet has attracted interest as a potential therapy for HIE. This review examined the role of the KD in HIE treatment and described the mechanisms by which ketone bodies (KBs) exert effects under pathological conditions and protect against brain damage; the evidence supports the implementation of dietary interventions as a therapeutic strategy for HIE. Future research should aim to elucidate the underlying mechanisms of the KD in patients with HIE and determine whether the effect of the KD on clinical outcomes can be reproduced in humans.
               
Click one of the above tabs to view related content.