LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Role of the Peli1-RIPK1 Signaling Axis in Methamphetamine-Induced Neuroinflammation.

Photo by schoelderle from unsplash

Severe neurological inflammation is one of the main symptoms of methamphetamine (meth)-induced brain injury. Studies have demonstrated that meth exposure facilitates neuroinflammation via Pellino E3 ubiquitin protein ligase 1 (Peli1)-mediated… Click to show full abstract

Severe neurological inflammation is one of the main symptoms of methamphetamine (meth)-induced brain injury. Studies have demonstrated that meth exposure facilitates neuroinflammation via Pellino E3 ubiquitin protein ligase 1 (Peli1)-mediated signaling. However, the involved mechanisms remain incompletely understood. Herein, we used Peli1-/- mice and Peli1-knockdown microglial BV2 cells to decipher the roles of Peli1 and downstream signaling in meth-induced neuroinflammation. After meth administration for seven consecutive days, Peli1-/- mice exhibited better learning and memory behavior and dramatically lower interleukin (IL)-1β, tumor necrosis factor (TNF)-α, and IL-6 levels than wild-type mice. Moreover, in vitro experiments revealed that Peli1 knockdown significantly attenuated the meth-induced upregulation of cytokines. Besides, meth markedly activated and increased the levels of receptor-interacting protein kinase 1 (RIPK1), and Peli1 knockout or knockdown prevented these effects, indicating that RIPK1 participated in meth-induced Peli1-mediated inflammation. Specifically, treating the cells with necrostatin-1(Nec-1), an antagonist of RIPK1, remarkably inhibited the meth-induced increase in IL-1β, TNF-α, and IL-6 expression, confirming the involvement of RIPK1 in Peli1-mediated neuroinflammation. Finally, meth induced a dramatic transfer of the mixed lineage kinase domain-like protein, a downstream effector of RIRK1, to the cell membrane, disrupting membrane integrity and causing cytokine excretion. Therefore, targeting the Peli1-RIPK1 signaling axis is a potentially valid therapeutic approach against meth-induced neuroinflammation.

Keywords: meth induced; induced neuroinflammation; peli1 ripk1; peli1; ripk1 signaling; ripk1

Journal Title: ACS chemical neuroscience
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.