LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Optoelectronic Properties of Tin–Lead Halide Perovskites

Mixed tin–lead halide perovskites have recently emerged as highly promising materials for efficient single- and multi-junction photovoltaic devices. This Focus Review discusses the optoelectronic properties that underpin this performance, clearly… Click to show full abstract

Mixed tin–lead halide perovskites have recently emerged as highly promising materials for efficient single- and multi-junction photovoltaic devices. This Focus Review discusses the optoelectronic properties that underpin this performance, clearly differentiating between intrinsic and defect-mediated mechanisms. We show that from a fundamental perspective, increasing tin fraction may cause increases in attainable charge-carrier mobilities, decreases in exciton binding energies, and potentially a slowing of charge-carrier cooling, all beneficial for photovoltaic applications. We discuss the mechanisms leading to significant bandgap bowing along the tin–lead series, which enables attractive near-infrared bandgaps at intermediate tin content. However, tin-rich stoichiometries still suffer from tin oxidation and vacancy formation which often obscures the fundamentally achievable performance, causing high background hole densities, accelerating charge-carrier recombination, lowering charge-carrier mobilities, and blue-shifting absorption onsets through the Burstein–Moss effect. We evaluate impacts on photovoltaic device performance, and conclude with an outlook on remaining challenges and promising future directions in this area.

Keywords: optoelectronic properties; charge carrier; lead halide; halide perovskites; tin lead

Journal Title: ACS Energy Letters
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.