LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Onset Potential for Electrolyte Oxidation and Ni-Rich Cathode Degradation in Lithium-Ion Batteries

Photo by prophet2018 from unsplash

High-capacity Ni-rich layered metal oxide cathodes are highly desirable to increase the energy density of lithium-ion batteries. However, these materials suffer from poor cycling performance, which is exacerbated by increased… Click to show full abstract

High-capacity Ni-rich layered metal oxide cathodes are highly desirable to increase the energy density of lithium-ion batteries. However, these materials suffer from poor cycling performance, which is exacerbated by increased cell voltage. We demonstrate here the detrimental effect of ethylene carbonate (EC), a core component in conventional electrolytes, when NMC811 (LiNi0.8Mn0.1Co0.1O2) is charged above 4.4 V vs Li/Li+—the onset potential for lattice oxygen release. Oxygen loss is enhanced by EC-containing electrolytes—compared to EC-free—and correlates with more electrolyte oxidation/breakdown and cathode surface degradation, which increase concurrently above 4.4 V. In contrast, NMC111 (LiNi0.33Mn0.33Co0.33O2), which does not release oxygen up to 4.6 V, shows a similar extent of degradation irrespective of the electrolyte. This work highlights the incompatibility between conventional EC-based electrolytes and Ni-rich cathodes (more generally, cathodes that release lattice oxygen such as Li-/Mn-rich and disordered rocksalt cathodes) and motivates further work on wider classes of electrolytes and additives.

Keywords: ion batteries; onset potential; lithium ion; electrolyte oxidation; degradation

Journal Title: ACS Energy Letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.