MoS2-based transition-metal chalcogenides are considered as cost-effective, highly active, and stable materials with great potential in the application of electrocatalytic hydrogen production. However, their limited quantity of active sites and… Click to show full abstract
MoS2-based transition-metal chalcogenides are considered as cost-effective, highly active, and stable materials with great potential in the application of electrocatalytic hydrogen production. However, their limited quantity of active sites and poor conductivity have hampered the efficiency of hydrogen production. Combining calculations and experiments, we demonstrate that P dopants could be the new active sites in the basal plane of MoS2 and help improve the intrinsic electronic conductivity, leading to a significantly improved activity for hydrogen evolution. Furthermore, the P-doped MoS2 nanosheets show enlarged interlayer spacing, facilitating hydrogen adsorption and release progress. Experimental results indicate that the P-doped MoS2 nanosheets with enlarged interlayer spacing exhibit remarkable electrocatalytic activity and good long-term operational stability (with Tafel slope of 34 mV/dec and an extremely low overpotential of ∼43 mV at 10 mA/cm2) . Our method demonstrated a facile technology for ...
               
Click one of the above tabs to view related content.