LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

105 Cyclable Pseudocapacitive Na-Ion Storage of Hierarchically Structured Phosphorus-Incorporating Nanoporous Carbons in Organic Electrolytes

Photo from wikipedia

Despite the significant impact of sodium (Na) storage systems in terms of natural abundance and environmental friendliness, high-performance pseudocapacitive mterials in organic electrolytes remain challenging. Here, we demonstrate the pseudocapacitive… Click to show full abstract

Despite the significant impact of sodium (Na) storage systems in terms of natural abundance and environmental friendliness, high-performance pseudocapacitive mterials in organic electrolytes remain challenging. Here, we demonstrate the pseudocapacitive Na-ion storage of hierarchically structured, phosphorus-incorporating steam-activated nanoporous carbons (P-aCNs) with improved rate and cyclic capabilities in organic electrolytes. The P-aCNs with a hierarchical honeycomb structure are derived from lignocellulosic biomass via a proposed synthetic process. The prominent pseudocapacitive behaviors of the P-containing groups in organic Na-ion electrolytes are confirmed by the surface area-independent and surface-confined capacitances, distinctive redox waves, and strong binding with Na-ions. In particular, the P-aCN demonstrates the cyclic stability of 96.0% over 100 000 cycles in the full cell, achieving a high capacitance of 265.43 F g–1 and rate capability of 75%. These Na-ion pseudocapacitive features of ...

Keywords: pseudocapacitive ion; storage hierarchically; ion; organic electrolytes; ion storage

Journal Title: ACS energy letters
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.