LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enhancing Defect Tolerance and Phase Stability of High-Bandgap Perovskites via Guanidinium Alloying

Photo by vlisidis from unsplash

The open-circuit voltages (VOC) of hybrid perovskite (HP) solar cells do not increase sufficiently with increasing bandgap (for Eg > 1.70eV). We study the impact of A+ size mismatch induced… Click to show full abstract

The open-circuit voltages (VOC) of hybrid perovskite (HP) solar cells do not increase sufficiently with increasing bandgap (for Eg > 1.70eV). We study the impact of A+ size mismatch induced lattice distortions (in ABX3 structure) on the optoelectronic quality of high-bandgap HPs and find that the highest quality films have high A-site size-mismatch, where large guanidinium (GA) compensates for small Cs to keep the tolerance factor in the range for the perovskite structure. Specifically, we find that 1.84eV bandgap (FA0.33GA0.19Cs0.47)Pb(I0.66Br0.34)3 and 1.75eV bandgap (FA0.58GA0.10Cs0.32)Pb(I0.73Br0.27)3 attain quasi-Fermi level splitting of 1.43eV and 1.35eV, respectively, which is >91% of the Shockley-Queisser limit for both cases. Films of 1.75eV bandgap (FA,GA,Cs)Pb(I,Br)3 are then used to fabricate p-i-n photovoltaic devices that have a VOC of 1.24 V. This VOC is among the highest VOC reported for any HPs with similar bandgap (1.7 to 1.8 eV) and a substantial improvement for the p-i-n architecture, ...

Keywords: bandgap; defect tolerance; enhancing defect; high bandgap; guanidinium

Journal Title: ACS energy letters
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.