Hybrid organic–inorganic lead halide perovskites have shown promising results as active layers in light-emitting diodes, typically utilizing the near-monochromatic, free exciton emission. Some perovskite compounds, however, show broad-band emission that… Click to show full abstract
Hybrid organic–inorganic lead halide perovskites have shown promising results as active layers in light-emitting diodes, typically utilizing the near-monochromatic, free exciton emission. Some perovskite compounds, however, show broad-band emission that is more intense than the free exciton counterpart. In this study, we show that the light emission properties of Ruddlesden–Popper hybrid perovskites PEA2MAn–1PbnI3n+1 (PEA = phenethylammonium, MA = methylammonium) can be tuned by Sn alloying and are highly sensitive to Sn %. With increasing dimensionality, the broad-band emission quantum yield decreases drastically, from 23% in n = 1 to <1% for the n = 3 compound. Using density functional theory calculations and transient reflectance spectroscopy, the broad emission is identified as originating from self-trapped excitons. A dynamic picture of the formation process is also presented, for which ultrafast (<5 ps) hole-trapping at the Sn site is the first step, followed by electron localization from Coulombic ...
               
Click one of the above tabs to view related content.