The noncanonical structures, G-quadruplexes (GQs), formed in the guanine-rich region of nucleic acids regulate various biological and molecular functions in prokaryotes and eukaryotes. Neisseria meningitidis is a commensal residing in… Click to show full abstract
The noncanonical structures, G-quadruplexes (GQs), formed in the guanine-rich region of nucleic acids regulate various biological and molecular functions in prokaryotes and eukaryotes. Neisseria meningitidis is a commensal residing in a human's upper respiratory tract but occasionally becomes virulent, causing life-threatening septicemia and meningitis. The factors causing these changes in phenotypes are not fully understood. At the molecular level, regulatory components help in a clearer understanding of the pathogen's virulence and pathogenesis. Herein, genome analysis followed by biophysical assays and cell-based experiments revealed the presence of conserved GQ motifs in N. meningitidis. These GQs are linked to the essential genes involved in cell adhesion, pathogenesis, virulence, transport, DNA repair, and recombination. Primer extension stop assay, reporter assays, and quantitative real-time polymerase chain reaction (qRT-PCR) further affirmed the formation of stable GQs in vitro and in vivo. These results support the existence of evolutionarily conserved GQ motifs in N. meningitidis and uphold the usage of GQ-specific ligands as novel antimeningococcal therapeutics.
               
Click one of the above tabs to view related content.