LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Erythro-PmBs: A Selective Polymyxin B Delivery System Using Antibody-Conjugated Hybrid Erythrocyte Liposomes.

Photo by solamander from unsplash

As a result of the growing worldwide antibiotic resistance crisis, many currently existing antibiotics have become ineffective due to bacteria developing resistive mechanisms. There are a limited number of potent… Click to show full abstract

As a result of the growing worldwide antibiotic resistance crisis, many currently existing antibiotics have become ineffective due to bacteria developing resistive mechanisms. There are a limited number of potent antibiotics that are successful at suppressing microbial growth, such as polymyxin B (PmB); however, these are often deemed as a last resort due to their toxicity. We present a novel PmB delivery system constructed by conjugating hybrid erythrocyte liposomes with antibacterial antibodies to combine a high loading efficiency with guided delivery. The retention of PmB is enhanced by incorporating negatively charged lipids into the red blood cells' cytoplasmic membrane (RBCcm). Anti-Escherichia coli antibodies are attached to these hybrid erythrocyte liposomes by the inclusion of DSPE-PEG maleimide linkers. We show that these erythro-PmBs have a loading efficiency of ∼90% and are effective in delivering PmB to E. coli, with values for the minimum inhibitory concentration (MIC) being comparable to those of free PmB. The MIC values for Klebsiella aerogenes, however, significantly increased well beyond the resistant breakpoint, indicating that the inclusion of the anti-E. coli antibodies enables the erythro-PmBs to selectively deliver antibiotics to specific targets.

Keywords: erythrocyte liposomes; hybrid erythrocyte; erythro pmbs; pmb; delivery

Journal Title: ACS infectious diseases
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.