LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

P. falciparum artemisinin resistance: the effect of heme, protein damage, and parasite cell stress response.

Photo from wikipedia

Despite a significant decline in morbidity and mortality over the last two decades, in 2018 there were 228 million reported cases of malaria and 405,000 malaria-related deaths. Artemisinin, the cornerstone… Click to show full abstract

Despite a significant decline in morbidity and mortality over the last two decades, in 2018 there were 228 million reported cases of malaria and 405,000 malaria-related deaths. Artemisinin, the cornerstone of artemisinin-based combination therapies, is the most potent drug in the antimalarial armamentarium against falciparum malaria. Heme-mediated activation of artemisinin and its derivatives results in widespread parasite protein alkylation, which is thought to lead to parasite death. Alarmingly, cases of decreased artemisinin efficacy have been widely detected across Cambodia and in neighboring countries, and a few cases have been reported in the Guiana Shield, India, and Africa. The grim prospect of widespread artemisinin resistance propelled a concerted effort to understand the mechanisms of artemisinin action and resistance. Identification of genetic markers and knowledge of molecular mechanisms underpinning artemisinin resistance allow prospective surveillance and inform future drug development strategies, respectively. Here, we highlight recent advances in our understanding of how parasite vesicle trafficking, hemoglobin digestion, and cell stress responses contribute to artemisinin resistance.

Keywords: protein; heme; artemisinin resistance; resistance; cell stress

Journal Title: ACS infectious diseases
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.