LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Retarded Crystallization and Promoted Phase Transition of Freeze-Dried Polybutene-1: Direct Evidence for the Critical Role of Chain Entanglement.

Photo by hollymindrup from unsplash

Polymorphism and crystal transition are common phenomena of semicrystalline polymers. These two behaviors are known to be controlled by the nucleation and chain mobility of polymers, both of which are… Click to show full abstract

Polymorphism and crystal transition are common phenomena of semicrystalline polymers. These two behaviors are known to be controlled by the nucleation and chain mobility of polymers, both of which are constrained by the chain entanglement at the molecular level. However, the role of chain entanglement in polymorphic crystallization and crystal phase transition of polymers has not been well understood. Herein, we use isotactic polybutene-1 (PB-1) as a model polymorphic polymer and present the crucial role of chain entanglement in the polymorphic crystallization kinetics and solid-solid phase transition. A series of less-entangled PB-1 with different entanglement degrees were successfully prepared by freeze-drying the polymer dilute solution. Compared to the bulk sample and re-entangled one, chain disentangling of PB-1 suppressed the crystallization kinetics of form II but significantly increased the phase transition rate and final transition degree from form II to form I. The disentangling-promoted II-I phase transition originated from the reduced nucleation barrier and enhanced chain mobility. This work would advance the in-depth understanding on the formation and transition mechanisms of polymorphic polymer crystals at the molecular level.

Keywords: chain entanglement; phase transition; crystallization; transition; role chain; chain

Journal Title: ACS macro letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.