LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Genetic Engineering of Adipose-Derived Stem Cells Using Biodegradable and Lipid-Like Highly Branched Poly(β-amino ester)s.

Photo from wikipedia

Biodegradable and lipid-like highly branched poly(β-amino ester)s, HPAESA, were developed to enhance the biological functions of adipose-derived stem cells by gene transfection. Biodegradability reduces the cytotoxicity of HPAESA and enables… Click to show full abstract

Biodegradable and lipid-like highly branched poly(β-amino ester)s, HPAESA, were developed to enhance the biological functions of adipose-derived stem cells by gene transfection. Biodegradability reduces the cytotoxicity of HPAESA and enables controlled DNA release. Lipid mimicry enhances cellular uptake and endosomal escape of HPAESA/DNA polyplexes. HPAESA are able to transfect rat adipose-derived stem cells (rADSs) and human ADSCs (hADSCs) with orders of magnitude higher efficiency than commercial gene transfection reagents, with cell viability exceeding 90%. Most importantly, HPAESA can effectively transfer the nerve growth factor (NGF)-encoding plasmid to rADSCs and induce high NGF secretion, which significantly promotes neurite outgrowth of PC12 cells.

Keywords: biodegradable lipid; derived stem; lipid like; adipose derived; stem cells

Journal Title: ACS macro letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.