Alternating gyroid is a lower symmetry variant of the double gyroid morphology, where the left-handed and right-handed chiral networks are physically distinct. This structure is of particular interest for photonic… Click to show full abstract
Alternating gyroid is a lower symmetry variant of the double gyroid morphology, where the left-handed and right-handed chiral networks are physically distinct. This structure is of particular interest for photonic applications owing to predictions of a complete photonic band gap subject to the requirement of a large dielectric contrast between the individual networks and sufficient optical matching between one of the networks and the matrix. We provide evidence, via self-consistent field theory (SCFT), that stoichiometric blends of double-gyroid-forming AB and BC diblock copolymers with relatively immiscible A and C blocks should form an alternating gyroid morphology with complementary three-dimensional A and C networks that have a free energy that is nearly degenerate with two phase-separated double gyroid states. Solvent casting offers the potential for trapping this binary mixture of diblock copolymers in this metastable alternating gyroid phase. Theory further predicts that the addition of a minuscule amount (<1%) of ABC triblock terpolymer will open an alternating gyroid stability window in the resulting ternary-phase diagram. The surfactant-like stabilization produced by the triblock is relatively insensitive to its exact composition provided the B-block forms a sufficiently long bridge between the A-rich and C-rich networks. This blending strategy provides significant synthetic and material processing advantages compared to prevailing methods to produce an alternating gyroid phase in block polymers.
               
Click one of the above tabs to view related content.