LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Lewis Adduct-Dissociating Hydrolysis of Boratrane for Water-Triggered Dehydration of Copolymers with a Hydrophobic Moiety.

Photo from wikipedia

As a new example of intrinsically water-triggered phenomena, we report underwater dehydration of the statistical copolymers synthesized from triethanolamine borate (TEAB) methacrylate and styrene (St) induced by the hydrolysis of… Click to show full abstract

As a new example of intrinsically water-triggered phenomena, we report underwater dehydration of the statistical copolymers synthesized from triethanolamine borate (TEAB) methacrylate and styrene (St) induced by the hydrolysis of the pendant TEAB group. TEAB possesses high polarity owing to its internal Lewis adduct structure, which is lost by hydrolysis to triethanolamine (TEA) with a lower dipole moment. Therefore, the hydration of the copolymers became unfavorable through the hydrolysis of the pendant TEAB to TEA, despite polyol formation, and through a hydrophobic interaction based on St moieties becoming alternatively dominant. The dehydration behavior of the copolymers, along with the hydrolysis of the pendant TEAB group, was systematically investigated. The water solubility of the copolymers was found to be dependent on the gradient of the hydrolysis equilibrium of TEAB on the side chains and was the lowest for the TEA state. These findings offer a novel concept toward designing water-responsive materials.

Keywords: dehydration; water; water triggered; lewis adduct; hydrolysis; teab

Journal Title: ACS macro letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.