Pressure-sensitive adhesives (PSAs) made from norbornene-functionalized terpenoid-based monomers are reported as a possible alternative to the conventional petrochemically based PSAs. For this, tetrahydrogeranyl, menthyl, and isobornyl norbornenate monomers, with a… Click to show full abstract
Pressure-sensitive adhesives (PSAs) made from norbornene-functionalized terpenoid-based monomers are reported as a possible alternative to the conventional petrochemically based PSAs. For this, tetrahydrogeranyl, menthyl, and isobornyl norbornenate monomers, with a renewable carbon content up to 72%, are synthesized and copolymerized via ring-opening metathesis polymerization (ROMP) with cyclooctadiene and 5-norbornene-2-carboxylic acid. ROMP enables a much faster and controlled polymerization process in comparison to free radical polymerization techniques when targeting high molecular weights and therefore unlocks a potential to design a unique class of PSA materials. The moduli at bonding and debonding frequencies of the obtained PSAs are plotted in the Chang classification system and are used to predict their adhesive performance. Tack and peel measurements indicate that the terpenoid-based norbornenate formulations show similar adhesive properties in comparison to the previously investigated acrylic counterparts.
               
Click one of the above tabs to view related content.