Emulsion-templated porous polymers have attracted broad attention due to their great application prospects in many fields. However, scaling up the emulsion-templated technique from the lab to industrial production remains a… Click to show full abstract
Emulsion-templated porous polymers have attracted broad attention due to their great application prospects in many fields. However, scaling up the emulsion-templated technique from the lab to industrial production remains a great challenge, especially for systems involving an oil-in-water (o/w) emulsion template that is used normally for preparing hydrophilic porous polymers. These systems require large amounts of organic solvents to be the internal phase (i.e., major phase) of the emulsion templates, which causes a significant environmental impact and cost. Herein, a water-in-water (w/w) emulsion-templated technique is presented to prepare porous hydrophilic polymers. The w/w emulsion is prepared by mixing a PEG aqueous solution and a dextran aqueous solution with cellulose nanocrystals (CNCs) as a stabilizer. With varying the mass ratio of dextran/PEG in the range of 1/2 to 8/1, a series of dextran-rich-phase-in-PEG-rich-phase (dextran/PEG) emulsions are obtained. Subsequently, monomers, such as acrylamide, acrylic acid, and/or 2-acrylamido-2-methylpropanesulfonic acid, are introduced to the emulsions to fabricate porous hydrophilic polymers. These polymers have an open-cell structure like those of o/w emulsion-templated polymers. The system developed herein is an environmentally friendly, low cost, and universal emulsion-templated method toward porous hydrophilic polymers, which avoids the defects caused by the presence of large amounts of organic solvents in an o/w emulsion-templating method and can be moved from the lab to industrial-scale production.
               
Click one of the above tabs to view related content.