LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Toughening Ionic Polymer Using Bulky Alkylammonium Counterions and Comb Architecture

Photo from wikipedia

Ionic interactions in ionic polymers, such as ionomers, polyelectrolytes, and polyampholytes, contribute to toughness in systems with high mobility and active ion dynamics, such as hydrogels and elastomers. However, it… Click to show full abstract

Ionic interactions in ionic polymers, such as ionomers, polyelectrolytes, and polyampholytes, contribute to toughness in systems with high mobility and active ion dynamics, such as hydrogels and elastomers. However, it remains challenging to toughen rigid polymers through ionic interactions without lowering their elastic modulus through plasticization. Here, we present a strategy for toughening without sacrificing the elastic modulus by combining a comb polymer with bulky ammonium counterions. We designed and synthesized ionic comb polymers with oligoethylene glycol side chains and carboxylic acids in each monomer unit of the polynorbornene backbone, neutralized by trialkylamines, ranging from ethyl to octyl. The counterion size in ionic comb polymers influenced the mechanical properties of tensile testing—not the elongation at break and the elastic modulus but the ultimate strength and toughness. The ionic comb polymer containing heptylammonium counterions displayed the highest toughness of 77 MJ m–3. Tensile studies at various strain rates demonstrated a rate-dependent difference between heptyl- and octylammonium counterions. This result suggests that the heptylammonium counterion acted as a sacrificial bond by providing a moderate dissociation rate that was slightly slower than that of the octylammonium counterion, leading to toughening.

Keywords: toughening ionic; polymer; polymer using; ionic polymer; ionic comb; elastic modulus

Journal Title: ACS Macro Letters
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.