Photomechanical effects realized in azobenzene-functionalized polyimides have shown large deformation and an exceptional increase in photogenerated force output. Here, we synthesize and characterize the photomechanical output of a series of… Click to show full abstract
Photomechanical effects realized in azobenzene-functionalized polyimides have shown large deformation and an exceptional increase in photogenerated force output. Here, we synthesize and characterize the photomechanical output of a series of linear polyimide materials prepared with a bulky substituent, incorporated via the development of a new bis(azobenzene-diamine) monomer containing a 9,9-diphenylfluorene cardo structure (azoCBODA). All six azoCBODA-containing polyimides are amorphous and exhibit high glass transition temperatures (Tg) ranging from 298 to 358 °C, storage moduli ranging from 2.27 to 3.81 GPa (at 30 °C), and good thermal stability. The magnitude of the photoinduced mechanical response of the azobenzene-functionalized polyimide is correlated to the rotational freedom of the polyimide chains (resulting in extensive segmental mobility) and fractional free volume (FFV > 0.1).
               
Click one of the above tabs to view related content.