The synthesis of well-defined, biodegradable selenium-containing polymers remains a formidable challenge in polymer chemistry. Herein, a selenic cyclic carbonate dimer monomer (MSe) was developed to generate well-defined, biodegradable aliphatic polycarbonates… Click to show full abstract
The synthesis of well-defined, biodegradable selenium-containing polymers remains a formidable challenge in polymer chemistry. Herein, a selenic cyclic carbonate dimer monomer (MSe) was developed to generate well-defined, biodegradable aliphatic polycarbonates with selenide functionality on the backbone. The monomer was synthesized via the intermolecular cyclization of di(1-hydroxyethylene) selenide and diphenyl carbonate with lipase CA as catalysts in a mass of anhydrous toluene with very dilute monomer concentration. Then living ring-opening polymerization (ROP) was executed by solution method using the same lipase CA as catalysts. Similarly, the copolymerizations with commercial trimethylene carbonate (TMC) generated random copolymers demonstrated by 13C NMR, regulating the density of selenium functional groups. The resulting polymers exhibited a living polymerization characteristic, as evidenced by polymerization kinetics, predictable molecular weights, narrow molecular-weight distribution, and contro...
               
Click one of the above tabs to view related content.