Current vitrimer technology uses only a handful of distinct reactions for cross-linking. New dynamic reactions can diversify vitrimer functionality and properties. In this paper, reversible cross-links formed by conjugate addition–elimination… Click to show full abstract
Current vitrimer technology uses only a handful of distinct reactions for cross-linking. New dynamic reactions can diversify vitrimer functionality and properties. In this paper, reversible cross-links formed by conjugate addition–elimination of thiols with a Meldrum’s acid derivative enable compression–remolding of silicone elastomers. After 10 remolding cycles, there is no discernible deterioration of mechanical properties (Young’s modulus, Tg, rubbery plateau E’), nor is there a change in stress relaxation activation energy. This robust new cross-linker could be implemented in any number of systems that currently use permanent thiol–ene cross-linking, expanding the scope of recyclable materials.
               
Click one of the above tabs to view related content.