LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Acid-Triggered Polymer Backbone Degradation and Disassembly to Achieve Release of Camptothecin from Functional Polyphosphoramidate Nanoparticles

Photo from wikipedia

Camptothecin (CPT) is a promising anticancer drug, yet its therapeutic potential has been limited by poor water solubility and facile hydrolysis of the lactone form into an inactive carboxylate form… Click to show full abstract

Camptothecin (CPT) is a promising anticancer drug, yet its therapeutic potential has been limited by poor water solubility and facile hydrolysis of the lactone form into an inactive carboxylate form at neutral pH. In this work, a fundamental synthetic methodology was advanced to allow for the preparation of well-defined functional polyphosphoramidate (PPA)-based block copolymers that coassembled with CPT into nanoparticles, which underwent coincident acid-triggered polymer backbone degradation, nanoparticle disassembly, and CPT release. Encapsulation of CPT by the PPA polymer inhibited premature hydrolysis of CPT at pH 7.4 and enabled accelerated CPT release at pH 5.0 (ca. 4× faster than at pH 7.4). Two degradable oxazaphospholidine monomers, with one carrying an alkyne group, were synthesized to access well-defined block PPAs (dispersity, Đ<1.2) via sequential organobase-catalyzed ring-opening polymerizations (ROP). The resulting amphiphilic block copolymers (PEOMP-b-PBYOMP) were physically loaded with C...

Keywords: triggered polymer; polymer backbone; acid triggered; functional polyphosphoramidate; backbone degradation; release

Journal Title: ACS Macro Letters
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.