To understand molecular factors that impact the performance of polymeric 19F magnetic resonance imaging (MRI) agents, a series of discrete fluorinated oligoacrylates with precisely defined structure were prepared through the… Click to show full abstract
To understand molecular factors that impact the performance of polymeric 19F magnetic resonance imaging (MRI) agents, a series of discrete fluorinated oligoacrylates with precisely defined structure were prepared through the combination of controlled polymerization and chromatographic separation techniques. These discrete oligomers enabled thorough elucidation of the dependence of 19F NMR and MRI properties on molecular structure, for example, the chain length. Importantly, the oligomer size and dispersity strongly influence NMR dynamics (T1 and T2 relaxation times) and MR imaging properties with higher signal-to-noise ratio (SNR) observed for oligomers with longer chain length and shorter T1. Our approach enables an effective pathway and thus opportunities to rationally design effective polymeric 19F MR imaging agents with optimized molecular structure and NMR relaxivity.
               
Click one of the above tabs to view related content.