LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fully Conjugated Donor–Acceptor Block Copolymers for Organic Photovoltaics via Heck–Mizoroki Coupling

Photo by itfeelslikefilm from unsplash

The development of facile routes to prepare fully conjugated block copolymers (BCPs) from diverse monomers is an important goal for advancing robust bulk-heterojunction (BHJ) organic photovoltaics (OPVs). Herein we introduce… Click to show full abstract

The development of facile routes to prepare fully conjugated block copolymers (BCPs) from diverse monomers is an important goal for advancing robust bulk-heterojunction (BHJ) organic photovoltaics (OPVs). Herein we introduce a synthetic strategy for step-growth BCPs employing 1,2-bis(trialkylstannyl)ethene as one monomer, which, in addition to offering improved backbone planarity, directly yields a vinylene-terminated macromonomer suitable for Heck–Mizoroki coupling. The benefits of our strategy, which facilitates the preparation of functionalized macromonomers suitable for BCP synthesis, are demonstrated with a representative BCP based on a diketopyrrolopyrrole (DPP) copolymer coded pBDTTDPP as the donor block and a perylenediimide (PDI) copolymer coded as pPDIV as the acceptor block. Feed ratio optimization affords control over the macromonomer chain-end functionalities and allows for the selective formation of a tri-BCP consisting of pPDIV-b-pBDTTDPP-b-pPDIV, which is employed in a single-component BHJ...

Keywords: mizoroki coupling; organic photovoltaics; block; block copolymers; heck mizoroki; fully conjugated

Journal Title: ACS Macro Letters
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.