The development of facile routes to prepare fully conjugated block copolymers (BCPs) from diverse monomers is an important goal for advancing robust bulk-heterojunction (BHJ) organic photovoltaics (OPVs). Herein we introduce… Click to show full abstract
The development of facile routes to prepare fully conjugated block copolymers (BCPs) from diverse monomers is an important goal for advancing robust bulk-heterojunction (BHJ) organic photovoltaics (OPVs). Herein we introduce a synthetic strategy for step-growth BCPs employing 1,2-bis(trialkylstannyl)ethene as one monomer, which, in addition to offering improved backbone planarity, directly yields a vinylene-terminated macromonomer suitable for Heck–Mizoroki coupling. The benefits of our strategy, which facilitates the preparation of functionalized macromonomers suitable for BCP synthesis, are demonstrated with a representative BCP based on a diketopyrrolopyrrole (DPP) copolymer coded pBDTTDPP as the donor block and a perylenediimide (PDI) copolymer coded as pPDIV as the acceptor block. Feed ratio optimization affords control over the macromonomer chain-end functionalities and allows for the selective formation of a tri-BCP consisting of pPDIV-b-pBDTTDPP-b-pPDIV, which is employed in a single-component BHJ...
               
Click one of the above tabs to view related content.