LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Adaptable to Mechanically Stable Hydrogels Based on the Dynamic Covalent Cross-Linking of Thiol-Aldehyde Addition

Photo from wikipedia

We exploit the thiol-aldehyde addition (TAA) reaction to build a dynamic covalent cross-linking (DCC) hydrogel in the physiological-pH environment. Due to the rapid and reversible TAA reaction, the resulting hydrogels… Click to show full abstract

We exploit the thiol-aldehyde addition (TAA) reaction to build a dynamic covalent cross-linking (DCC) hydrogel in the physiological-pH environment. Due to the rapid and reversible TAA reaction, the resulting hydrogels are readily adapted for convenient manipulation, for example, free molding, easy injection, and self-healing. Meanwhile, the labile hemithioacetal bonds within the DCC hydrogel can convert to thermodynamically stable bonds via spontaneous thiol transfer reactions, thereby realizing poststabilization as needed. The successful application as a long-term scaffold for repair of barely self-healed bone defect indicated the hydrogels with both adaptability and mechanical stability based on thiol-aldehyde addition reaction is significant for biomedical areas.

Keywords: cross linking; thiol aldehyde; dynamic covalent; aldehyde addition; covalent cross

Journal Title: ACS Macro Letters
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.