LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Synthesis and Optimization of Nitroxide-Based Inhibitors of Ferroptotic Cell Death in Cancer Cells and Macrophages.

Photo by matmacq from unsplash

JP4-039 is an alkene peptide isostere that acts as a low-micromolar inhibitor of erastin- and RSL-3-induced ferroptotic cell death in the HT-1080 cell line. In this work, we have developed… Click to show full abstract

JP4-039 is an alkene peptide isostere that acts as a low-micromolar inhibitor of erastin- and RSL-3-induced ferroptotic cell death in the HT-1080 cell line. In this work, we have developed new synthetic strategies that allow access to analogues of this lead structure. Enantioselective vinylogous Mannich or cross-metathesis reactions were key to the preparation of a series of analogues that culminated in the preparation of the ca. 30-fold more potent analogue (S)-6c. Structure-activity relationship analyses used both HT-1080 cells and a luminescence-based ferroptosis assay in RAW 264.7 macrophages. In particular, α,α-disubstituted alkene peptide isosteres (Rα ≠ H) were found to exceed the potency of the corresponding glycine (Rα = H) derivatives.

Keywords: cell death; cell; ferroptotic cell; optimization nitroxide; synthesis optimization

Journal Title: ACS medicinal chemistry letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.