LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Accelerated Discovery of Macrocyclic CDK2 Inhibitor QR-6401 by Generative Models and Structure-Based Drug Design.

Photo by googledeepmind from unsplash

Selective CDK2 inhibitors have the potential to provide effective therapeutics for CDK2-dependent cancers and for combating drug resistance due to high cyclin E1 (CCNE1) expression intrinsically or CCNE1 amplification induced… Click to show full abstract

Selective CDK2 inhibitors have the potential to provide effective therapeutics for CDK2-dependent cancers and for combating drug resistance due to high cyclin E1 (CCNE1) expression intrinsically or CCNE1 amplification induced by treatment of CDK4/6 inhibitors. Generative models that take advantage of deep learning are being increasingly integrated into early drug discovery for hit identification and lead optimization. Here we report the discovery of a highly potent and selective macrocyclic CDK2 inhibitor QR-6401 (23) accelerated by the application of generative models and structure-based drug design (SBDD). QR-6401 (23) demonstrated robust antitumor efficacy in an OVCAR3 ovarian cancer xenograft model via oral administration.

Keywords: cdk2 inhibitor; generative models; macrocyclic cdk2; drug; inhibitor 6401

Journal Title: ACS medicinal chemistry letters
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.