LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ions and Water Dancing through Atom-Scale Holes: A Perspective toward "Size Zero".

Photo from wikipedia

We provide an overview of atom-scale apertures in solid-state membranes, from "pores" and "tubes" to "channels", with characteristic sizes comparable to the sizes of ions and water molecules. In this… Click to show full abstract

We provide an overview of atom-scale apertures in solid-state membranes, from "pores" and "tubes" to "channels", with characteristic sizes comparable to the sizes of ions and water molecules. In this regime of ∼1 nm diameter pores, water molecules and ions are strongly geometrically confined: the size of water molecules (∼0.3 nm) and the size of "hydrated" ions in water (∼0.7-1 nm) are similar to the pore diameters, physically limiting the ion flow through the hole. The pore sizes are comparable to the classical Debye screening length governing the spatial range of electrostatic interaction, ∼0.3 to 1 nm for 1 to 0.1 M KCl. In such small structures, charges can be unscreened, leading to new effects. We discuss experiments on ∼1 nm diameter nanopores, with a focus on carbon nanotube pores and ion transport studies. Finally, we present an outlook for artificial "size zero" pores in the regime of small diameters and small thicknesses. Beyond mimicking protein channels in nature, solid-state pores may offer additional possibilities where sensing and control are performed at the pore, such as in electrically and optically addressable solid-state materials.

Keywords: water; size; ions water; size zero; atom scale

Journal Title: ACS nano
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.