Infections by the Ebola virus (EBOV) rapidly cause fatal hemorrhagic fever in humans. Viral entry into host cells is the most critical step in infection and an attractive target for… Click to show full abstract
Infections by the Ebola virus (EBOV) rapidly cause fatal hemorrhagic fever in humans. Viral entry into host cells is the most critical step in infection and an attractive target for therapeutic intervention. Herein, the invagination behavior and entry dynamics of filamentous Ebola virus-like particles (EBO-VLPs) were investigated using a force tracing technique based on atomic force microscopy and single-particle fluorescence tracking in real time. The filamentous EBOV-VLPs might enter cells in both horizontal and vertical modes, and the virus-receptor interactions during endocytic uptake were analyzed. In addition, molecular dynamics simulations and engulfment energy analysis further depicted EBO-VLP entry in the horizontal and vertical directions and suggested that internalization in the vertical direction requires larger force and more time. This report provides useful information for further revealing the mechanism of viral infection, which is important for understanding viral pathogenesis.
               
Click one of the above tabs to view related content.