LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hexagonal Boron Nitride for Sulfur Corrosion Inhibition.

Photo from wikipedia

Corrosion by sulfur compounds is a long-standing challenge in many engineering applications. Specifically, designing a coating that protects metals from both abiotic and biotic forms of sulfur corrosion remains an… Click to show full abstract

Corrosion by sulfur compounds is a long-standing challenge in many engineering applications. Specifically, designing a coating that protects metals from both abiotic and biotic forms of sulfur corrosion remains an elusive goal. Here we report that atomically thin layers (∼4) of hexagonal boron nitride (hBN) act as a protective coating to inhibit corrosion of the underlying copper (Cu) surfaces (∼6-7-fold lower corrosion than bare Cu) in abiotic (sulfuric acid and sodium sulfide) and biotic (sulfate-reducing bacteria medium) environments. The corrosion resistance of hBN is attributed to its outstanding barrier properties to the corrosive species in diverse environments of sulfur compounds. Increasing the number of atomic layers did not necessarily improve the corrosion protection mechanisms. Instead, multilayers of hBN were found to upregulate the adhesion genes in Desulfovibrio alaskensis G20 cells, promote cell adhesion and biofilm growth, and lower the protection against biogenic sulfide attack when compared to the few layers of hBN. Our findings confirm hBN as the thinnest coating to resist diverse forms of sulfur corrosion.

Keywords: sulfur corrosion; boron nitride; hexagonal boron; nitride sulfur; corrosion

Journal Title: ACS nano
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.