LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Soft, Conductive External Stent Inhibits Intimal Hyperplasia in Vein Grafts by Electroporation and Mechanical Restriction.

Photo by averey from unsplash

Intimal hyperplasia (IH) in vein grafts (VGs) is a major issue in coronary artery bypass grafting (CABG) surgery. Although external stents can attenuate IH of VGs to some extent, none… Click to show full abstract

Intimal hyperplasia (IH) in vein grafts (VGs) is a major issue in coronary artery bypass grafting (CABG) surgery. Although external stents can attenuate IH of VGs to some extent, none of the existing external stents have shown satisfactory clinical outcomes. Here we develop a flexible, biodegradable, and conductive external metal-polymer conductor stent (MPCS) that can electroporate the vessel wall and produce a protein that prevents IH. We designed the plasmid DNA encoding the tissue inhibitor of metalloproteinases-3 (TIMP-3) and lyophilized it on the inner surface of the MPCS to deliver into the adventitia and the middle layer of VGs for gene therapy. Coupled with its continuous mechanical support to prevent dilation after implanting, the MPCS can inhibit the IH of VGs significantly in the rabbit model. This proof-of-concept demonstration may aid the development of other implantable bioelectronics for electroporation gene therapy.

Keywords: conductive external; intimal hyperplasia; hyperplasia vein; vein grafts

Journal Title: ACS nano
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.