LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Neutral Exciton Diffusion in Monolayer MoS2.

Photo from wikipedia

Monolayer transition metal dichalcogenides (TMDCs) are promising materials for next generation optoelectronic devices. The exciton diffusion length is a critical parameter that reflects the quality of exciton transport in monolayer… Click to show full abstract

Monolayer transition metal dichalcogenides (TMDCs) are promising materials for next generation optoelectronic devices. The exciton diffusion length is a critical parameter that reflects the quality of exciton transport in monolayer TMDCs and limits the performance of many excitonic devices. Although diffusion lengths of a few hundred nanometers have been reported in the literature for as-exfoliated monolayers, these measurements are convoluted by neutral and charged excitons (trions) that coexist at room temperature due to natural background doping. Untangling the diffusion of neutral excitons and trions is paramount to understand the fundamental limits and potential of new optoelectronic device architectures made possible using TMDCs. In this work we measure the diffusion lengths of neutral excitons and trions in monolayer MoS2 by tuning the background carrier concentration using a gate voltage and utilizing both steady state and transient spectroscopy. We observe diffusion lengths of 1.5 μm and 300 nm for neutral excitons and trions, respectively, at an optical power density of 0.6 Wcm-2.

Keywords: exciton diffusion; diffusion; monolayer; diffusion lengths; excitons trions; monolayer mos2

Journal Title: ACS nano
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.