LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Low-Power and Ultra-Thin MoS2 Photodetectors on Glass.

Photo from wikipedia

Integration of low-power consumer electronics on glass can revolutionize the automotive and transport sectors, packaging industry, smart building and interior design, healthcare, life science engineering, display technologies, and many other… Click to show full abstract

Integration of low-power consumer electronics on glass can revolutionize the automotive and transport sectors, packaging industry, smart building and interior design, healthcare, life science engineering, display technologies, and many other applications. However, direct growth of high-performance, scalable, and reliable electronic materials on glass is difficult owing to low thermal budget. Similarly, development of energy-efficient electronic and optoelectronic devices on glass requires manufacturing innovations. Here, we accomplish both by relatively low-temperature (<600 °C) metal-organic chemical vapor deposition growth of atomically thin MoS2 on multicomponent glass and fabrication of low-power phototransistors using atomic layer deposition (ALD)-grown, high-k, and ultra-thin (∼20 nm) Al2O3 as the top-gate dielectric, circumventing the challenges associated with the ALD nucleation of oxides on inert basal planes of van der Waals materials. The MoS2 photodetectors demonstrate the ability to detect low-intensity visible light at high speed and low energy expenditure of ∼100 pico Joules. Furthermore, low device-to-device performance variation across the entire 1 cm2 substrate and aggressive channel length scalability confirm the technology readiness level of ultra-thin MoS2 photodetectors on glass.

Keywords: thin mos2; ultra thin; mos2 photodetectors; low power

Journal Title: ACS nano
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.