LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

[2π + 2π] Photocycloaddition of Enones to Single-Walled Carbon Nanotubes Creates Fluorescent Quantum Defects.

Photo from wikipedia

Single-walled carbon nanotubes (SWCNTs) have been widely applied in biomedical fields such as drug delivery, biosensing, bioimaging, and tissue engineering. Understanding their reactivity with biomolecules is important for these applications.… Click to show full abstract

Single-walled carbon nanotubes (SWCNTs) have been widely applied in biomedical fields such as drug delivery, biosensing, bioimaging, and tissue engineering. Understanding their reactivity with biomolecules is important for these applications. We describe here a photoinduced cycloaddition reaction between enones and SWCNTs. By creating covalent and tunable sp3 defects in the sp2 carbon lattice of SWCNTs through [2π + 2π] photocycloaddition, a bright red-shifted photoluminescence was gradually generated. The photocycloaddition functionalization was demonstrated with various organic molecules bearing an enone functional group, including biologically important oxygenated lipid metabolites. The mechanism of this reaction was studied empirically and using computational methods. Density functional theory calculations were employed to elucidate the identity of the reaction product and understand the origin of different substrate reactivities. The results of this study can enable engineering of the optical and electronic properties of semiconducting SWCNTs and provide understanding into their interactions with the lipid biocorona.

Keywords: carbon; walled carbon; carbon nanotubes; photocycloaddition; single walled; photocycloaddition enones

Journal Title: ACS nano
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.