LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Thermal Transport in Molecular Forests.

Photo by drew_hays from unsplash

Heat propagation in quasi-one-dimensional materials (Q1DMs) often appears puzzling. For example, while an isolated Q1DM, such as a nanowire, a carbon nanotube, or a polymer, can exhibit a high thermal… Click to show full abstract

Heat propagation in quasi-one-dimensional materials (Q1DMs) often appears puzzling. For example, while an isolated Q1DM, such as a nanowire, a carbon nanotube, or a polymer, can exhibit a high thermal conductivity κ, forests of the same materials can show a reduction in κ. Until now, the complex structures of these assemblies have hindered the emergence of a clear molecular picture for this intriguing phenomenon. We combine coarse-grained simulations with concepts known from polymer physics and thermal transport to unveil a generic microscopic picture of κ reduction in molecular forests. We show that a delicate balance among the persistence length of the Q1DM, the segment orientations, and the flexural vibrations governs the reduction in κ.

Keywords: molecular forests; reduction; transport molecular; thermal transport

Journal Title: ACS nano
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.