The hyperphosphorylated and aggregated tau accumulation represents a significant pathological hallmark of tauopathies including Alzheimer's disease (AD), which is highly associated with defective autophagy in neuronal cells. Autophagy-activating strategies demonstrate… Click to show full abstract
The hyperphosphorylated and aggregated tau accumulation represents a significant pathological hallmark of tauopathies including Alzheimer's disease (AD), which is highly associated with defective autophagy in neuronal cells. Autophagy-activating strategies demonstrate the therapeutic potential for AD in many studies; however, further development is limited by their low efficacy and serious side effects that result from a lack of selectivity for diseased cells. Herein, we report a tauopathy-homing nanoassembly (THN) with autophagy-activating capacity for AD treatment. Specifically, the THN can bind to hyperphosphorylated and/or aggregated tau and selectively accumulate in cells undergoing tauopathy. The THN further promotes the clearance of pathogenic tau accumulation by stimulating autophagic flux, consequently rescuing neuron viability and cognitive functions in AD rats. This study presents a promising nanotechnology-based strategy for tauopathy-homing and autophagy-mediated specific removal of pathogenic tau in AD.
               
Click one of the above tabs to view related content.