Stem cell derived small extracellular vesicles (sEVs) have been proved to promote neurological recovery after stroke. Recent studies demonstrate a phenomenal tissue repair ability in embryonic stem cell derived sEVs… Click to show full abstract
Stem cell derived small extracellular vesicles (sEVs) have been proved to promote neurological recovery after stroke. Recent studies demonstrate a phenomenal tissue repair ability in embryonic stem cell derived sEVs (ESC-sEVs). However, whether ESC-sEVs could protect against ischemic stroke remains unknown. Immune responses play an essential role in the pathogenesis of ischemic stroke, and modulating post-stroke immune responses ameliorates ischemia-induced brain damage. In this study, we aim to determine the therapeutic function of ESC-sEVs, specifically focusing on their role in immunomodulation after ischemic stroke. ESC-sEVs are intravenously administered after transient middle cerebral artery occlusion. ESC-sEVs significantly decrease leukocyte infiltration, inflammatory cytokine expression, neuronal death, and infarct volume and alleviate long-term neurological deficits and tissue loss after ischemic stroke. Interestingly, ESC-sEVs induce a marked increase in regulatory T cells (Tregs) after stroke. Further, ESC-sEV-afforded immunomodulatory function and neuroprotection against stroke are dependent on Tregs, as the depletion of Tregs almost completely abrogates the protective effects. Mechanistically, proteomic analysis reveals the enrichment of TGF-β, Smad2, and Smad4 proteins in ESC-sEVs, which could be delivered to activate the TGF-β/Smad pathway in CD4+ T cells and therefore induce Treg expansion. ESC-sEVs modulate neuroinflammation and protect against ischemic stroke through the expansion of Tregs, a process that is partially dependent on the activation of the TGF-β/Smad signaling pathway by the transfer of TGF-β, Smad2, and Smad4. The results suggest ESC-sEVs might be a candidate for immune modulation.
               
Click one of the above tabs to view related content.