LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Tailoring Highly Ordered Graphene Framework in Epoxy for High-Performance Polymer-Based Heat Dissipation Plates.

Photo from wikipedia

As the power density and integration level of electronic devices increase, there are growing demands to improve the thermal conductivity of polymers for addressing the thermal management issues. On the… Click to show full abstract

As the power density and integration level of electronic devices increase, there are growing demands to improve the thermal conductivity of polymers for addressing the thermal management issues. On the basis of the ultrahigh intrinsic thermal conductivity, graphene has exhibited great potential as reinforcing fillers to develop polymer composites, but the resultant thermal conductivity of reported graphene-based composites is still limited. Here, an interconnected and highly ordered graphene framework (HOGF) composed of high-quality and horizontally aligned graphene sheets was developed by a porous film-templated assembly strategy, followed by a stress-induced orientation process and graphitization post-treatment. After embedding into the epoxy (EP), the HOGF/EP composite (24.7 vol %) exhibits a record-high in-plane thermal conductivity of 117 W m-1 K-1, equivalent to ≈616 times higher than that of neat epoxy. This thermal conductivity enhancement is mainly because the HOGF as a filler concurrently has high intrinsic thermal conductivity, relatively high density, and a highly ordered structure, constructing superefficient phonon transport paths in the epoxy matrix. Additionally, the use of our HOGF/EP as a heat dissipation plate was demonstrated, and it achieved 75% enhancement in practical thermal management performance compared to that of conventional alumina for cooling the high-power LED.

Keywords: ordered graphene; thermal conductivity; conductivity; graphene framework; highly ordered

Journal Title: ACS nano
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.