LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multifunctional CuO/Cu2O Truncated Nanocubes as Trimodal Image-Guided Near-Infrared-III Photothermal Agents to Combat Multi-Drug-Resistant Lung Carcinoma.

Photo from wikipedia

Despite the development of various therapeutic modalities to tackle cancer, multidrug resistance (MDR) and incomplete destruction of deep tissue-buried tumors remain as long-standing challenges responsible for tumor recurrence and low… Click to show full abstract

Despite the development of various therapeutic modalities to tackle cancer, multidrug resistance (MDR) and incomplete destruction of deep tissue-buried tumors remain as long-standing challenges responsible for tumor recurrence and low survival rates. In addition to the MDR and deep tissue photoactivation problems, most primary tumors metastasize to the lungs and lymph nodes to form secondary tumors. Therefore, it leaves a great challenge to develop theranostic approaches to combat both MDR and deep tissue photoactivation problems. Herein, we develop a versatile plasmonic CuO/Cu2O truncated nanocube-based theranostic nanomedicine to act as a triple modal near-infrared fluorescence (NIRF) imaging agent in the biological window II (1000-1500 nm)/photoacoustic imaging (PAI)/T1-weighted magnetic resonance (MR) imaging agents, sensitize the formation of singlet oxygen (1O2) to exert nanomaterial-mediated photodynamic therapeutic (NIR-II NmPDT), and absorb long NIR light (i.e., 1550 nm) in the biological window III (1500-1700 nm) to exert nanomaterial-mediated photothermal therapeutic (NIR-III NmPTT) effects for the effective destruction of multi-drug-resistant lung tumors. We found that H69AR lung cancer cells do not create drug resistance toward plasmonic CuO/Cu2O TNCs-based nanomedicines.

Keywords: iii; cuo; cuo cu2o; cu2o truncated; drug

Journal Title: ACS nano
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.