LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multimaterial Self-Aligned Nanopatterning by Simultaneous Adjacent Thin Film Deposition and Etching.

Photo from wikipedia

Printed component sizes in electronic circuits are approaching 10 nm, but inherent variability in feature alignment during photolithography poses a fundamental barrier for continued device scaling. Deposition-based self-aligned patterning is… Click to show full abstract

Printed component sizes in electronic circuits are approaching 10 nm, but inherent variability in feature alignment during photolithography poses a fundamental barrier for continued device scaling. Deposition-based self-aligned patterning is being introduced, but nuclei defects remain an overarching problem. This work introduces low-temperature chemically self-aligned film growth via simultaneous thin film deposition and etching in adjacent regions on a nanopatterned surface. During deposition, nucleation defects are avoided in nongrowth regions because deposition reactants are locally consumed via sacrificial etching. For a range of materials and process conditions, thermodynamic modeling confirms that deposition and etching are both energetically favorable. We demonstrate nanoscale patterning of tungsten at 220 °C with simultaneous etching of TiO2. Area selective deposition (ASD) of the sacrificial TiO2 layer produces an orthogonal sequence for self-aligned patterning of two materials on one starting pattern, i.e., TiO2 ASD on SiO2 followed by W ASD on Si-H. Experiments also show capacity for self-aligned dielectric patterning via favorable deposition of AlF3 on Al2O3 at 240 °C with simultaneous atomic layer etching of sacrificial ZnO. Simultaneous deposition and etching provides opportunities for low-temperature bottom-up self-aligned patterning for electronic and other nanoscale systems.

Keywords: deposition; deposition etching; thin film; self aligned

Journal Title: ACS nano
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.