LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Reprogramming of Neutrophils as Non-canonical Antigen Presenting Cells by Radiotherapy-Radiodynamic Therapy to Facilitate Immune-Mediated Tumor Regression.

Photo from wikipedia

Ineffective antigen cross-presentation in the tumor microenvironment compromises the generation of antitumor immune responses. Radiotherapy-radiodynamic therapy (RT-RDT) with nanoscale metal-organic frameworks (nMOFs) induces robust adaptive immune responses despite modest activation… Click to show full abstract

Ineffective antigen cross-presentation in the tumor microenvironment compromises the generation of antitumor immune responses. Radiotherapy-radiodynamic therapy (RT-RDT) with nanoscale metal-organic frameworks (nMOFs) induces robust adaptive immune responses despite modest activation of canonical antigen presenting dendritic cells. Here, using transplantable and autochthonous murine tumor models, we demonstrate that RT-RDT induces antitumor immune responses via early neutrophil infiltration and reprogramming. Intravenous or intratumoral injection of nMOFs recruited peripheral CD11b+Ly6G+CD11c- neutrophils into tumors. The activation of nMOFs by low-dose X-rays significantly increased the population of CD11b+Ly6G+CD11c+ hybrid neutrophils with upregulated expression of the co-stimulatory molecules CD80 and CD86 as well as major histocompatibility complex class II molecules. Thus, nMOF-enabled RT-RDT reshapes a favorable tumor microenvironment for antitumor immune responses by reprogramming tumor-infiltrating neutrophils to function as non-canonical antigen presenting cells for effective cross-presentation of tumor antigens.

Keywords: canonical antigen; immune responses; antigen; radiotherapy radiodynamic; antigen presenting; tumor

Journal Title: ACS nano
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.