LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Strategy to Fabricate a Strong and Supertough Bio-Inspired Fiber with Organic-Inorganic Networks in a Green and Scalable Way.

Photo from wikipedia

Green and scalable production of some fibrous materials with higher fracture energy has long been the goal of researchers. Although some progress has been made in recent years in the… Click to show full abstract

Green and scalable production of some fibrous materials with higher fracture energy has long been the goal of researchers. Although some progress has been made in recent years in the research of materials with high fracture energy, inspired by the fiber structure of spider silk, it is still a great challenge to produce artificial fibers with extremely high toughness using a simple and green process. Here, we use the molecular and nanoscale engineering of calcium phosphate oligomers (CaP, < 1 nm) and waterborne polyurethanes (WPU) macromolecules that have strong interactions to form organic-inorganic networks just like β-sheet crystalline and flexible amorphous regions in spider silk. Through a simple and green route based on widespread paper string processing techniques, we fabricate a strong and supertough bioinspired fiber with a high strength (442 MPa), which is 7-15 times higher than the strength of counterpart PU (20-30 MPa), and a super toughness (640 MJ m-3), which is 2-3.5 times higher than the toughness of spider dragline silk. This technique provides a strategy for industrially manufacturing spider fiber-like artificial fibers with a super toughness.

Keywords: fabricate strong; organic inorganic; inspired fiber; inorganic networks; strong supertough; green scalable

Journal Title: ACS nano
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.