The replacement of dressings may cause secondary damage to the wounds; thus, the real-time monitoring of the state of wound dressings is crucial for evaluating wound care processes. Herein, we… Click to show full abstract
The replacement of dressings may cause secondary damage to the wounds; thus, the real-time monitoring of the state of wound dressings is crucial for evaluating wound care processes. Herein, we report a smart dressing to self-monitor residue nanomedicine on it during the application. We load aminobenzeneboronic acid (ABA)-modified gold nanoclusters (A-GNCs) on bacterial cellulose (BC) membranes as an antibacterial wound dressing to display the amount of residual nanomedicine (A-GNCs) by in situ colorimetry during the application in remedying multi-drug-resistant (MDR) bacteria-infected wounds. A-GNCs emit bright orange fluorescence under UV light, whereas the BC membrane is transparent at a humidified state on the wounds. Thus, the BC-A-GNCs nanocomposite (BGN) shows decreasing intensity of orange fluorescence with the release of the A-GNCs, indicating the appropriate time points for the replacement of the dressing. The BGN, which can realize accurate self-monitoring in a simple, low-cost, and efficient way, thus holds great promise for broad clinical applications.
               
Click one of the above tabs to view related content.