LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Picoseconds-Limited Exciton Recombination in Metal-Organic Chalcogenides Hybrid Quantum Wells.

Photo from wikipedia

Metal-organic species can be designed to self-assemble in large-scale, atomically defined, supramolecular architectures. A particular example is hybrid quantum wells, where inorganic two-dimensional (2D) planes are separated by organic ligands.… Click to show full abstract

Metal-organic species can be designed to self-assemble in large-scale, atomically defined, supramolecular architectures. A particular example is hybrid quantum wells, where inorganic two-dimensional (2D) planes are separated by organic ligands. The ligands effectively form an intralayer confinement for charge carriers resulting in a 2D electronic structure, even in multilayered assemblies. Air-stable layered transition metal organic chalcogenides have recently been found to host tightly bound 2D excitons with strong optical anisotropy in a bulk matrix. Here, we investigate the excited carrier dynamics in the prototypical metal-organic chalcogenide [AgSePh]∞, disentangling three excitonic resonances by low temperature transient absorption spectroscopy. Our analysis suggests a complex relaxation cascade comprising ultrafast screening and renormalization, interexciton relaxation, and self-trapping of excitons within a few picoseconds (ps). The ps-decay provided by the self-trapping mechanism may be leveraged to unlock the material's potential for ultrafast optoelectronic applications.

Keywords: quantum wells; organic chalcogenides; metal organic; hybrid quantum; metal

Journal Title: ACS nano
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.