LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Two Faces Under a Hood: Unravelling the Energy Harnessing and Storage Properties of 1T-MoS2 Quantum Sheets for Next-Generation Stand-Alone Energy Systems.

Photo by mbrunacr from unsplash

The two-dimensional 1T-MoS2 quantum sheets (QSs) continuously seek attention due to their extraordinary energy harnessing and storage properties towards designing an all-in-one self-charging power system (SCPS). Herein, we have utilized… Click to show full abstract

The two-dimensional 1T-MoS2 quantum sheets (QSs) continuously seek attention due to their extraordinary energy harnessing and storage properties towards designing an all-in-one self-charging power system (SCPS). Herein, we have utilized the superior dual-functional nature of exfoliated MoS2 QSs for SCPS via fabricating all-solid-state microsupercapacitors (MSC) as an energy storage device and triboelectric nanogenerator (TENG) with MoS2 QSs based charge-trapping interfacial layer as the energy harvester. The electrochemical analysis of MoS2 QSs MSC indicated their superior capacitive properties with a high areal capacitance (4.3 mF cm-2), energy density (0.38 μWh cm-2), and long cycle life. Furthermore, we emphasize the fabrication of MSC with shape diversity and performance uniformity via construction in several designable shapes, which exhibit superior electrochemical performances. The MoS2 QSs based charge-trapping layer enhances the output performance of TENG dramatically with a peak power density as large as 10 μW cm-2, which is 13-fold greater than that of the pristine TENG. As proof of the concept, we fabricated an all MoS2 based SCPS which showed their ability to self-charge up to a maximum of 1050 mV, outperforming many SCPS reported previously. Overall, this work creates a way to utilize the bifunctional properties of MoS2 QSs for the development of next-generation SCPS.

Keywords: mos2 qss; quantum sheets; energy harnessing; energy; mos2 quantum; storage

Journal Title: ACS nano
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.